05 Apr

Tata – Airtel domestic peering IRR filtering and OpenDNS latency!

Last month I noticed quite high latency with Cisco’s OpenDNS from my home fibre connection. The provider at home is IAXN (AS134316) which is peering with content folks in Delhi besides transit from Airtel.

ping -c 5 208.67.222.222
PING 208.67.222.222 (208.67.222.222) 56(84) bytes of data.
64 bytes from 208.67.222.222: icmp_seq=1 ttl=51 time=103 ms
64 bytes from 208.67.222.222: icmp_seq=2 ttl=51 time=103 ms
64 bytes from 208.67.222.222: icmp_seq=3 ttl=51 time=103 ms
64 bytes from 208.67.222.222: icmp_seq=4 ttl=51 time=103 ms
64 bytes from 208.67.222.222: icmp_seq=5 ttl=51 time=103 ms
--- 208.67.222.222 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt min/avg/max/mdev = 103.377/103.593/103.992/0.418 ms

This is bit on the higher side as from Haryana to Mumbai (OpenDNS locations list here). My ISP is backhauling from Faridabad which is probably 6-8ms away from my city and 2-3ms further to Delhi and from there to Mumbai around 30ms. Thus latency should be around ~40-45ms.

Here’s how forward trace looked like

traceroute 208.67.222.222
traceroute to 208.67.222.222 (208.67.222.222), 30 hops max, 60 byte packets
 1  172.16.0.1 (172.16.0.1)  0.730 ms  0.692 ms  0.809 ms
 2  axntech-dynamic-218.140.201.103.axntechnologies.in (103.201.140.218)  4.904 ms  4.314 ms  4.731 ms
 3  10.10.26.1 (10.10.26.1)  6.000 ms  6.414 ms  6.326 ms
 4  10.10.26.9 (10.10.26.9)  6.836 ms  7.135 ms  7.047 ms
 5  nsg-static-77.249.75.182-airtel.com (182.75.249.77)  9.344 ms  9.416 ms  9.330 ms
 6  182.79.243.201 (182.79.243.201)  62.274 ms 182.79.177.69 (182.79.177.69)  66.874 ms 182.79.239.193 (182.79.239.193)  61.297 ms
 7  121.240.1.201 (121.240.1.201)  85.789 ms  82.250 ms  79.591 ms
 8  172.25.81.134 (172.25.81.134)  110.049 ms 172.31.29.245 (172.31.29.245)  114.350 ms  113.673 ms
 9  172.31.133.210 (172.31.133.210)  112.598 ms 172.19.138.86 (172.19.138.86)  114.889 ms 172.31.133.210 (172.31.133.210)  113.415 ms
10  115.110.234.50.static.mumbai.vsnl.net.in (115.110.234.50)  125.770 ms  125.056 ms  123.779 ms
11  resolver1.opendns.com (208.67.222.222)  113.648 ms  115.044 ms  106.066 ms

Forward trace looks fine except that latency jumps as soon as we hit Tata AS4755 backbone. OpenDNS connects with Tata AS4755 inside India and announces their anycast prefixes to them. If the forward trace is logically correct but has high latency, it often reflects the case of bad return path. Thus I requested friends at OpenDNS to share the return path towards me. As expected, it was via Tata AS6453 Singapore.

Here’s what Tata AS4755 Mumbai router had for IAXN prefix:

BGP routing table entry for 14.102.188.0/22
Paths: (1 available, best #1, table Default-IP-Routing-Table)
Not advertised to any peer
6453 9498 134316 134316 134316 134316 134316 134316 134316 134316 134316 134316
192.168.203.194 from 192.168.199.193 (192.168.203.194)
Origin IGP, localpref 62, valid, internal, best
Community: 4755:44 4755:97 4755:888 4755:2000 4755:3000 4755:47552 6453:50 6453:3000 6453:3400 6453:3402
Originator: 192.168.203.194, Cluster list: 192.168.199.193 192.168.194.15
Last update: Mon Mar 25 15:26:36 2019

Thus what was happening is this:

Forward path: IAXN (AS134316) > Airtel (AS9498) > Tata (AS4755) > OpenDNS (AS36692)

Return path: OpenDNS (AS36692) > Tata (AS4755) > Tata (AS6453) > Airtel (AS9498) > IAXN (AS134316)

While this may seem like a Tata – Airtel routing issue but it wasn’t. I could see some of the prefixes with a direct path as well. Here’s a trace from Tata AS4755 Mumbai PoP to an IP from a different pool of IAXN:

traceroute to 103.87.46.1 (103.87.46.1), 15 hops max, 60 byte packets
1 * * *
2 172.31.170.210 (172.31.170.210) 0.911 ms 0.968 ms 0.643 ms
3 172.23.78.233 (172.23.78.233) 1.233 ms 0.821 ms 0.810 ms
4 172.17.125.249 (172.17.125.249) 23.540 ms 23.454 ms 23.367 ms
5 115.110.232.174.static.Delhi.vsnl.net.in (115.110.232.174) 49.175 ms 48.832 ms 49.107 ms
6 182.79.153.87 (182.79.153.87) 48.777 ms 182.79.153.83 (182.79.153.83) 49.043 ms 182.79.177.127 (182.79.177.127) 54.879 ms
7 103.87.46.1 (103.87.46.1) 60.865 ms 60.540 ms 60.644 ms

This clearly was fine. So why Tata was treating 103.87.46.0/24 different from 14.102.188.0/22? The reason for that lies in following:

  • Airtel (AS9498) very likely peers with Tata (AS4755). They do interconnect for sure as we see in traceroutes and my understanding is that it’s based on settlement-free peering for Indian traffic.
  • Airtel (AS9498) buys IP transit from Tata (AS6453) (besides a few others). Tata AS6453 is carrying the routing announcements to other networks in the transit free zone and that confirms that Airtel (at least technically) has a downstream customer relationship here.
  • Tata (AS4755) has IRR based filters on peering but not the Tata (AS6453) for it’s downstream. Hence while Tata rejected the route in India, they did accept that in Singapore PoP.
  • My IP was from prefix 14.102.188.0/22 and there was no valid route object for it at any of key IRRs like ATLDB, APNIC or RADB. But other prefix 103.87.46.0/24 did had a valid route object on APNIC.

Now after almost 10 days of it, my ISP has changed the BGP announcement and announcing 14.102.189.0/24 (which does a valid route object on APNIC). This fixes the routing problem and give me pretty decent latency with OpenDNS:

ping -c 5 208.67.222.222
PING 208.67.222.222 (208.67.222.222): 56 data bytes
64 bytes from 208.67.222.222: icmp_seq=0 ttl=55 time=52.552 ms
64 bytes from 208.67.222.222: icmp_seq=1 ttl=55 time=53.835 ms
64 bytes from 208.67.222.222: icmp_seq=2 ttl=55 time=53.330 ms
64 bytes from 208.67.222.222: icmp_seq=3 ttl=55 time=52.700 ms
64 bytes from 208.67.222.222: icmp_seq=4 ttl=55 time=52.504 ms
--- 208.67.222.222 ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 52.504/52.984/53.835/0.518 ms

So if you are a network operator and originating prefixes, please do document them in any of the IRRs. You can do that via IRR of your RIR (APNIC, ARIN etc) or a free IRR like ALTDB. If you have downstreams, make sure to create AS SET, add downstreams ASNs in your AS SET and also include that AS SET on peeringdb for the world to see!

Misc Notes

  • Posted strictly in my personal capacity and has nothing to do with my employrer.
  • Thanks for folks from Cisco/OpenDNS for quick replies with relevant data which helped in troubleshooting. ūüôā
01 Mar

Encrypted DNS using DNSCrypt

Writing this post from my hotel room in Kathmandu. I found that many of the servers appear to be DNS resolvers which is unusual.
E.g:

dig @anuragbhatia.com . ns +short
a.root-servers.net.
b.root-servers.net.
c.root-servers.net.
d.root-servers.net.
e.root-servers.net.
f.root-servers.net.
g.root-servers.net.
h.root-servers.net.
i.root-servers.net.
j.root-servers.net.
k.root-servers.net.
l.root-servers.net.
m.root-servers.net.
dig @google.com . ns +short
b.root-servers.net.
c.root-servers.net.
d.root-servers.net.
e.root-servers.net.
f.root-servers.net.
g.root-servers.net.
h.root-servers.net.
i.root-servers.net.
j.root-servers.net.
k.root-servers.net.
l.root-servers.net.
m.root-servers.net.
a.root-servers.net.

 
This seems unusual and is the result of basically port 53 DNS hijack. Let’s try to verify it using popular “whoami.akamai.net” query.

dig @8.8.8.8 whoami.akamai.net a +short
202.79.32.164
dig @9.9.9.9 whoami.akamai.net a +short
202.79.32.164
dig @1.2.3.4 whoami.akamai.net a +short
202.79.32.164

So clearly something in middle is hijacking DNS queries and no matter whichever DNS resolver I try to use, the queries actually hit authoritative DNS via 202.79.32.164. This belongs to WorldLink Communications (ISP here in Nepal) and I am just 5 hops away from it.
 
So what can be done about these cases? Well, one way is VPN of course but with a setup where VPN server’s IP address is hardcoded in the client and not using DNS. It works and does the task but performance can vary greatly depending on how far is the tunnel server. A better and more modern¬†way out of it is by using encryption in DNS by using a protocol named “DNSCrypt“. DNSCrypt offers to encrypt of DNS queries from clients to the DNS resolvers. (Beyond that resolver still, follow usual non-encrypted root chain to reach authoritative DNS servers).
 
So how does it work?
There’s no integrated support of DNSCrypt in OS’es at this time. There are number of projects like¬†dnscrypt-osxclient available on GitHub which enable this support.¬† Once configured, the client changes system’s DNS resolver to a local IP which listens for port 53 (regular/non-encrypted) requests.

cat /etc/resolv.conf |grep nameserver
nameserver 127.0.0.54

The client often offers support of various open resolvers like OpenDNS, Quad9 etc.

dig @127.0.0.54 whoami.akamai.net a +short
67.215.80.66

 
 
Here it shows that DNS resolver in my case happens to be Cisco’s OpenDNS. As soon as the client gets port 53 DNS queries, it encrypts it and sends via UDP port 443 (UDP or TCP depending on provider and client configuration). The encyption¬†is based on trusted¬†root CA’s and associated chain as popularly used in HTTPS. This is also one of reasons why DNSCrypt is also known as DNS over HTTPS.
 
Here’s an example of a DNS query to resolve A record of google.com while running tcpdumps¬†in parallel:

sudo tcpdump -i lo0 'dst port 53' -n
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on lo0, link-type NULL (BSD loopback), capture size 262144 bytes
04:36:04.429212 IP 127.0.0.54.50966 > 127.0.0.54.53: 31576+ A? prd.col.aria.browser.skypedata.akadns.net. (59)
04:36:04.532015 IP 127.0.0.54.54914 > 127.0.0.54.53: 623+ [1au] A? google.com. (39)
^C
2 packets captured
4 packets received by filter
0 packets dropped by kernel

This shows request went in clear text to 127.0.0.54 which is configured on loopback. While in parallel if I watch for traffic towards OpenDNS public IPs, I get:

sudo tcpdump -i en0 'dst 208.67.220.220 or dst 208.67.222.222' -n
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en0, link-type EN10MB (Ethernet), capture size 262144 bytes
04:39:56.827824 IP 192.168.0.4.53763 > 208.67.220.220.443: UDP, length 512
^C
1 packet captured
63 packets received by filter
0 packets dropped by kernel

Thus all that appears here is just an encrypted packet to Cisco OpenDNS over UDP port 443.
I ran another query and saved it in pcap file. Here’s how it looks like in wireshark:

 
 
 
That’s all about it for now. I am going to keep encryption enabled especially when travelling from now onwards. Time to get some sleep. ūüôā
 
Useful Links:

  1. dnscrypt-osxclient –¬†https://github.com/alterstep/dnscrypt-osxclient
  2. DNSCrypt Wikipedia –¬†https://en.wikipedia.org/wiki/DNSCrypt
  3. DNS Over HTTPS (Google Public DNS) –¬†https://developers.google.com/speed/public-dns/docs/dns-over-https
  4. DNS over TLS (Quad9) –¬†https://quad9.net/faq/#Does_Quad9_support_DNS_over_TLS